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Table 1. PTS Fluorescence Quenching Results at 25 0C 

Quencher 

1 
2 
3 
4 

Water 

70 
2.6 
5.0 

"k0"X 10-9M"1 

In the presence 
of CTAC micelle^ 

<\.0d 

66 
5.0 

320 

s - l a.b 

In the presence 
ofSDSmicehV 

<1.0rf 

2.4 
5.0 

<\.0d 

a Apparent /CQ'S from the steady-state Stern-Volmer slopes using 
measured rf's as follows: water, 13 ns; CTAC micelle, 8 ns; SDS mi­
celle, 16 ns. All experiments were carried out on nondegassed samples. 
* Estimated error limits ±10%. c [CTAC] = 1.0 X 10-2 M which is 
well above the critical micelle concentration of 1.0 X 10-3 M. [SDS] 
= 1.5 X 10-2 M which is well above the critical micelle concentration 
of 8.0 X 10-3 M. P. Mukerjee and K. Mysels, "Critical Micelle 
Concentration of Surfactant Systems", National Bureau Standards 
Reference Data Series, National Bureau of Standards, Washington, 
D.C, 1971. d No quenching was observed but upper limit was esti­
mated from the sensitivity limit of the steady-state experiment. 

< [Q] < 1.0 X 1O-2 M using independently measured rfs. 
The fluorescence quenching order is 1 » 3 > 2 in pure 

water, 2 » 3 > 1 in the presence of CTAC micelles and 3 > 
2 > 1 in the presence of SDS micelles. The results in the ab­
sence of micelles show the expected influence of electrostatic 
interactions between the excited fluorophor and the charged 
quenchers. In the presence of the CTAC micelles, where PTS 
is bound to the micelle surface11'12 the reactivity order is de­
termined by the relative binding efficiencies of the nitroxyl 
radicals to the micelle. In the environment of the cationic 
micelle, the reaction between the similarly charged reactants 
(PTS and 2) is strongly enhanced and that between the two 
oppositely charged reactants (PTS and 1) is strongly retarded 
relative to the results in pure water. 

In the presence of the SDS micelle, PTS appears to be dis­
sociated from the micelle surface. Under this condition, 2 and 
3 quench the excited PTS as efficiently as they do in pure 
water. The striking result is the inhibition of the reaction be­
tween excited PTS and 1 which presumably results because 
of strong binding of the latter to the anionic micelle. 

The results obtained with the surfactant nitroxyl radical 4 
support the interpretations given above. This quencher is in­
corporated into both the CTAC and SDS micelles13 and is a 
model for the micelle-bound quencher. In the presence of the 
CTAC micelle, where the fluorophor also is associated with 
the micelle, very efficient fluorescence quenching is observed. 
However, in the presence of the SDS micelle, where the fluo­
rophor is dissociated, very inefficient fluorescence quenching 
is noted.14 

At this time, we stress only the qualitative interpretation of 
these results. Because both static-like and dynamic quenching 
mechanisms15 can operate, the absolute magnitudes of the &Q'S 
in Table I should be cautiously interpreted. Further work is in 
progress to sort out these pathways and to explore the useful­
ness of this quencher system for studying interactions between 
fluorophors solubilized in the hydrophobic core of micelles and 
reactants in the aqueous medium. 
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Stereochemistry of the 1,3-Proton Loss from a 
Chiral Methyl Group in the Biosynthesis of 
Cycloartenol as Determined by Tritium 
Nuclear Magnetic Resonance Spectroscopy 

Sir: 

The biosynthesis of sterols by photosynthetic organisms1 

proceeds through cyclization of 2,3-oxidosqualene (1) to yield 
cycloartenol (2) in contrast to nonphotosynthetic organisms2 

where the cyclization product is lanosterol (3) (Scheme I). The 
last step in the biosynthetic pathway leading to 2 involves a 
1,3-proton loss from a methyl group to form the cyclopropane 
ring. A priori, this process could take in one of two stereo-
chemically defined ways—retention or inversion of configu­
ration around the C-6 methyl group (Scheme II). We now 
report our results on the stereochemistry of the 1,3-proton loss 
as determined by 3H N M R spectroscopy.3 

The labeled, chiral substrate 12 for cyclization studies was 
prepared from D-malic acid (4) according to Scheme III. 3H 
N M R spectra of 10 (Figure 1) confirm the fact that each 
molecule of 10 labeled with a tritium atom at C-7 was also 
labeled with one deuterium atom (and one hydrogen atom) at 
C-7. Approximately thirty percent of all molecules were Ia-
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Scheme I 

Figure 1. (a) The 106.7-MHz proton decoupled 3H NMR spectrum of 
10 in C6D6. Two overlapping 1:1:1 triplets at S 1.076 and 1.057 are ob­
served (JDT = 2.1 Hz). (b) The 106.7-MHz 3H NMR spectrum of 10 in 
C6D6. Two overlapping multiplets are observed at 5 1.076 and 1.057 
(•̂ HT(gem) = 13.6 Hz; 7HT(ViC) = 6.5 Hz). 

cycloartenol (2) 

Scheme II 

Figure 2. (a) The 106:7-MHz NOE suppressed, proton-decoupled 3H 
NMR spectrum of tritium-labeled biosynthetic cycloartenol (2) in C6D6. 
(b) The 106.7-MHz 3H NMR spectrum of tritium-labeled biosynthetic 
cycloartenol (2) in C6D6. 

beled with tritium. All subsequent transformations proceeded 
without exchange of tritium as was demonstrated by the con­
stancy of the specific activity of 10 (11 Ci/mmol), 11 (11.7 
Ci/mmol), and 12 (9.4 Ci/mmol). 

The conversion of chiral tritium labeled oxidosqualene (12) 
into tritium-labeled cycloartenol (2) was accomplished in 
~22% yield by incubation with a cell-free microsomal fraction 
from Ochromonas malhamensis. 

The biosynthetic cycloartenol showed only one spot on TLC 
(and by radiochromatogram scanning) and cochromato-
graphed with authentic cycloartenol. The NOE suppressed, 
proton-decoupled 3H NMR spectrum (Figure 2a) of tritium-
labeled biosynthetic cycloartenol (2) shows resonances at <5 
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Scheme III. Synthetic Pathway for Chiral, Tritium-labeled 
2,3-Oxidosqualene, 12a 

HO1" CO2H 

4 

QiH35 

a Reagents: 4 - 5 , (a)" AcCl, (b) EtOH, (c)5 B2H6, (d) CH3MgBr; 
5 - 6 , (a) acetone, H+, (b) Cr03-pyr2, CH2Cl2, (c)6 Ph3P=CHC-
(~=0)D; 6 - I,1 HLADH, NADH, pH 6.8; 7 - 8, (a)8 r-Bu(CH3)2-
SiCl, (b)9 B2H6, (C) H2O2, "OH, (d)8 (K-Bu)4N

+F", THF; 8 - 910>" 
(a) TsCl, (b) "OH, CH3OH; 9 - 10,12>13 NaBT4, Me2SO; 10-11, 
(a)14 CBr4, (M-Bu)3P, pyr, THF, (b) Mg, THF, (c)15 C21H35CHO, 
(d)16 (PhO)3P

+CH3I", HMPT; 11 - 12, (a) CH3OH, H+, (b) TsCl, (c) 
"OH, CH3OH. 

0.168, 0.438, and 0.456 in a ratio of 4.64:1:1.46. We assign18 

the resonances as follows: the resonance at 5 0.168 is due to an 
exo cyclopropyl tritium in molecules which also have an endo 
deuterium; the resonance at 5 0.438 is due to an endo cyclo­
propyl tritium in molecules which also have an exo deute­
rium;19 and the resonance at 5 0.456 is due to an endo cyclo­
propyl tritium in molecules which also have an exo hydrogen. 
These assignments are confirmed by the proton-coupled 3H 
NMR spectrum (Figure 2b) in which only the resonance at 8 
0.456 has been split (J = 4 Hz). 

It is thus immediately apparent that this conversion has 
proceeded with retention of configuration.20 
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Stereospecific Double Alkylation of 
Diphenylacetylene by »;5-Cyclopentadienyl-
(triphenylphosphine)dimethylcobalt(III). Evidence 
for Noninterconvertible Diastereomeric Complexes 
in the Cobalt-Catalyzed Isomerization of Alkenes, 
and Some Comments on Factors Influencing the 
Rates of Reductive Elimination Reactions 

Sir: 

Yamazaki and Hagihara reported in 1971 that treatment 
T- of J75-cyclopentadienyl(triphenylphosphine)dimethylco-

balt(III) (1) with 2.8 equiv of diphenylacetylene (2) in re-
fluxing benzene led to metallocycle 3 (Scheme I) and 
??4-tetraphenylcyclobutadiene(775-cyclopentadienyl)cobalt(I) 
(4) in 49 and 13% yield, respectively.1 Because this report left 
the methyl groups in 1 unaccounted for, and 1 "doubly alk­
ylates" CO to give acetone quantitatively,2 we have reinves­
tigated this reaction. We find that, when 1 is dissolved in 
oxygen-free benzene-^ and heated at 56 0C with 3.4 equiv of 
diphenylacetylene, 3 is observed, as reported earlier.3 However, 
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